3D Correlation Imaging for Localized Phase Disturbance Mitigation

Share With...

INTERESTED IN THIS TOPIC?
WRITE A MESSAGE OR CALL US

Abstract:

Correlation plenoptic imaging is a procedure to perform light-field imaging without spatial resolution loss, by measuring the second-order spatiotemporal correlations of light. We investigate the possibility of using correlation plenoptic imaging to mitigate the effect of a phase disturbance in the propagation from the object to the main lens. We assume that this detrimental effect, which can be due to a turbulent medium, is localized at a specific distance from the lens, and is slowly varying in time. The mitigation of turbulence effects has already fostered the development of both light-field imaging and correlation imaging procedures. Here, we aim to merge these aspects, proposing a correlation light-field imaging method to overcome the effects of slowly varying turbulence, without the loss of lateral resolution, typical of traditional plenoptic imaging devices.

Authors: Pepe, Francesco V., and Milena D’Angelo

Publication location: Photonics

Date of publication: 6 August 2024

D.O.I: https://doi.org/10.3390/photonics11080733

How to cite this article: Pepe, Francesco V., and Milena D’Angelo. 2024. “3D Correlation Imaging for Localized Phase Disturbance Mitigation” Photonics 11, no. 8: 733. https://doi.org/10.3390/photonics11080733

Stay connected

News & Events

Latest news from Adequade peoject

 
Adequade
Privacy policy summary

We use cookies to provide and secure our Website as well to differentiate between users and sessions, distinguish users, improve user experience according to its preferences or to identify the origin of the user account. To learn more about our use of cookies see our Privacy Statement. You can find out more about which cookies we are using or switch them off in settings.